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Abstract

[1543] There are several proposals to resolve the problem of epistemic peer
disagreement which concentrate on the question of how to incorporate
evidence of such a disagreement. The main positions in this field are the
equal weight view, the steadfast view, and the total evidence view. In this paper
we present a new argument in favour of the equal weight view. As we
will show, this view results from a general approach of forming epistemic
attitudes in an optimal way. By this, the argument for equal weighting can
be massively strengthened from reasoning via epistemic indifference to
reasoning from optimality.
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1 Introduction

Two peers have an epistemic disagreement regarding a proposition if their
epistemic attitudes towards the proposition differ. So, e.g., an agent’s degrees
of belief in p might be different from that of her peer, etc. The question of how
to deal with such a disagreement is the problem of epistemic peer disagree-
ment.

Several proposals to resolve this problem have been put forward in the liter-
ature. Most of them concentrate on the question of if, and if so, to what extent
one should weight evidence of such a disagreement in forming an epistemic
attitude towards a proposition. A classical position is the so-called conciliatory
view which calls for incorporating such evidence (cf., e.g., Christensen 2007;
Elga 2007; Feldman 2007). A position at the other end of the spectrum is the
so-called steadfast view which suggests to generally give no weight to such ev-
idence (cf., e.g., Rosen 2001). In between are views that suggest to sometimes
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give such evidence some weight, and sometimes not, [1544] or to weight such
evidence from case to case differently (cf., e.g., the total evidence view in Kelly
2011).

In this paper we want to present a new argument to the debate which has
lasted for more than a decade now (it was initiated by Feldman 2007; but the
systematic discussion of epistemic disagreement started much earlier; Lehrer
and Wagner 1981, e.g., is central). In favour of the most prominent concilia-
tory view, namely the equal weight view, we show that equally weighting one’s
peer’s and one’s own epistemic attitudes allows for an optimal resolution of
epistemic disagreement, whereas the other views lack this feature.

Our approach to epistemic peer disagreement is based on the theory of
meta-induction as introduced by Schurz (2008). The theory of meta-induction
was designed to provide an optimality argument for induction. However,
Schurz (2012) indicates also an application of the theory of meta-induction to
the debate on fundamental disagreement, where epistemic agents “disagree in
their underlying cognitive system [. . . i.e. they disagree on] fundamental princi-
ples of reasoning that determine the criteria for justification”. There it is sug-
gested to resolve such disagreements by applying methods that are “universal
in the sense of being reasonable in every cognitive system” (Schurz 2012, p.343
and p.346). As we show, this suggestion can be also expanded to the general
case of epistemic peer disagreement and is even decisive regarding the single
positions in the debate. The main idea of our application is roughly as follows:

(i) In case of epistemic peer disagreement agents have the same inferential
skills and share all evidence.

(ii) The equal weight view suggests that in such a case one should weight all
epistemic attitudes equally, whereas its competitors suggest to deviate
from such a weighting.

(iii) We suggest interpreting or operationalising inferential skills by help of past
accuracy (reliability): Two agents, who share all evidence, have the same
inferential skills, if they were equally accurate in the past.

(iv) Now, according to the theory of meta-induction, if one considers a se-
quence of competing epistemic attitudes, then there is a procedure of
weighting the attitudes in such a way that one is guaranteed to become
optimal: By weighting an epistemic attitude accordingly with its past ac-
curacy in the sequence (i.e. with its reliability), such a weighted epistemic
attitude cannot be outperformed in terms of accuracy in the long run, so
it is optimal in the long run.

(v) Hence, according to this method, if the past accuracies (reliabilities) are
equal, then they also should to be weighted equally.

(vi) Hence, in case of epistemic peer disagreement, the equal weight view
instantiates an optimal meta-inductive weighting method, whereas its
competitors do not and can become suboptimal.
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(vii) This result is robust in the sense that it holds also for less idealised model
assumptions.

The plan of our investigation is as follows: In section 2 we present the for-
mal framework of the classical approaches to epistemic peer disagreement (re-
garding i–ii). Subsequently, in section 3, we expand the framework to the meta-
inductive setting and suggest interpreting the condition about equal inferential
skills in terms of reliabilities [1545] (regarding iii). In section 4 we provide our
optimality argument in favour of the equal weight view. There we also show
how the other approaches fail to deal with the optimality argument (regard-
ing iv–vi). In section 5 we list some possible objections to our argument and
explain how one can overcome them (regarding vii). We conclude in section 6.

2 Approaches to Epistemic Peer Disagreement

Epistemic peer disagreement with respect to a proposition p is that special case
of disagreement, where two epistemic peers differ in their epistemic attitudes
towards p. Regarding the notion of epistemic attitudes, we follow the line of ar-
gumentation of Kelly (2011) and assume without further ado attitudes on the
cardinal scale, i.e. degrees of belief. Also regarding the notion of epistemic peers
we presuppose the well-known interpretation and assume in accordance with
Feldman (2007) (and Elga 2007, Christensen 2007) that peers are characterised
by their having the same evidence and the same inferential skills. Regarding
evidence, we also follow Christensen (2010) and Kelly (2011, p.194) in distin-
guishing between higher order evidence which is any kind of information about
the degrees of belief of an epistemic agent, and first order evidence which is all
other information not about degrees of belief of an epistemic agent.

Now, the traditional approaches to the problem of epistemic peer disagree-
ment differ along the line of how to incorporate higher order evidence. If we
spell out ‘incorporate’, as is often suggested, in terms of linear weighting (cf.
Elga 2007; Nissan-Rozen and Spectre 2017), then we can describe the case of
peer disagreement as one of finding a correct weighted update of one’s de-
grees of belief given some higher order evidence. Note that there are other
ways of weighted updating as, e.g., geometrical weighting, however, we will
focus on linear characterisations of the three classical approaches to epistemic
peer disagreement only (for details on geometrical weighting cf. Dietrich and
List 2016; Easwaran et al. 2016; Brössel and Eder 2014).

So, our model of epistemic peer disagreement basically states that higher
order evidence about such disagreement is taken into account by linear weight-
ing. Since we want to keep track of the accuracy of the different agents at
different occasions, we time-index everything – the credences, the higher or-
der evidence, the weights (and later on also the propositions in question). For
modelling this case we introduce the following notation:

• Let us assume that Pr1
i , Pr2

i , Pr3
i , . . . (1 ≤ i ≤ n) are the agents’ degrees

of belief after updating on first order evidence – the superscript indices
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mark the rounds of update.

• In case of epistemic peer disagreement between individuals i and j re-
garding some p it holds at some round t: Prt

i (p) = ri ̸= rj = Prt
j(p).

Furthermore, the agents become aware of this – they receive in the same
round but in a second phase higher order evidence et which contains the
details of the disagreement. Thus, in this setting the problem of epistemic
peer disagreement can be formulated as follows: [1546]

Prt
i (p|et) = Prt

i (p|Prt
1(p) = r1, . . . , Prt

n(p) = rn) =?

• As we have stated above, incorporation of such higher order evidence is
often described as a form of linear weighting. So it holds:

Epistemic Peer Disagreement:
There are wt

1, . . . , wt
n such that:

1. Prt
i (p|et) =

n

∑
j=1

wt
j · Prt

j(p) (EPD)

This is our model of the problem of epistemic peer disagreement: A group of
1, . . . , n epistemic peers updates on higher order evidence et by determining
weights wt

1, . . . , wt
n.

In this model, the weights can vary among the rounds. We will see later on
that this is crucial for motivating our optimality-argument. In most investiga-
tions the weights are considered to be constant, i.e. round-independent. How-
ever, this expresses the model assumption that the factor of inferential compe-
tence does not change, something we want to be flexible on. Note also that the
assumption of shared evidence is “hard-coded” in the model: All agents up-
date at the same round on the same first order evidence. This is due to the fact
that in our discussion we need no flexibility regarding differences in evidence.

Given this framework, we can describe three classical approaches to the
problem of epistemic peer disagreement with the help of the following speci-
fications: The equal weight view claims that in case of peer disagreement the
epistemic attitudes of all peers should get equal weight:

Equal Weight View:
Among peers the weights are equal: 1. of (EPD) and:

2. wt
1 = · · · = wt

n = 1/n (for all 0 < t ∈ N) (EWV)

Considering the impact of first order evidence and higher order evidence in
an agent’s forming of an epistemic attitude, it is easy to see that higher or-
der evidence can swamp first order evidence, simply because an agent’s first
order evidence gains only 1/n weight, whereas higher order evidence gains
n − 1/n weight. The most prominent proponents are Christensen (2007) and
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Elga (2007); a coarse-grained version for a nominal scale is held by Feldman
(2007).

The steadfast view points in the completely opposite direction: According
to it, one’s own epistemic attitude gains full weight, whereas the attitudes of
one’s peers get no weight, i.e. higher order evidence does not matter at all:

Remain Steadfast View:
Among peers one’s own position gets full weight: 1. of (EPD) and

2. wt
i = 1 and wt

j = 0

(for all 0 < t ∈ N, j ∈ {1, . . . , n} \ {i})
(RSV)

[1547] Perhaps the most prominent proponent of (RSV) is Rosen (2001).
Finally, we also want to model the total evidence view: According to this

view, only taking into account either higher order evidence or first order evi-
dence provides no adequate response to the total evidence available. Although
the description of this view in (Kelly 2011, p.201) does not automatically ask
for some linear “interaction” between first and higher order evidence, the argu-
ments and further phrasing of it (cf., e.g., swamping, insubstantial and substantial
evidence, equally strong pieces of evidence, greater proportion of our total evidence etc.
in Kelly 2011, pp.201ff) seem to grant such a linear interaction. This the more,
as in the following model the weights can be varied from case to case (one
might argue that linear weighting does not allow for a synergy effect of increas-
ing one’s degrees of belief due to consilience with that of one’s peers, whereas
geometric weighting does; however, Kelly, who argues for such an effect, does
so only in the context of peer agreement and not peer disagreement):

Total Evidence View:
Among peers one’s own position might be partly or fully influ-
enced by the other peers’ positions: 1. of (EPD) and

2. wt
1 + · · ·+ wt

n = 1,

wt
j ≥ 0 (1 ≤ j ≤ n)

(TEV)

So, (TEV) just guarantees that the weights used in resolving epistemic peer
disagreement allow for linear weighting.

The arguments for and against each of these views are well discussed in
the debate on epistemic peer disagreement. We will not present and discuss
them here in detail. Rather, given our formal model, we want to add a further
argument to the debate which strikes us as decisive with respect to (EWV).
We will then recap some arguments against (EWV) when we consider possible
objections to our argument in section 5.

3 Inferential Skills As Reliabilities

One argument for the equal weight view (EWV) originates from indifference-
considerations: If the epistemic attitudes of some peers are indistinguishable
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with respect to their underlying evidence as well as their inferential skills, why
should there be a difference with respect to their epistemic impact in updating
one’s degrees of belief, once one becomes aware of a disagreement? The as-
sumption that all agents share the same evidence is already hard-wired in our
model: At each round all agents update on the same first order evidence. But
how can we express that the peers have the same inferential skills? We want
to suggest implementing this into the model by help of a reliabilistic measure
of “inferential” or predictive success. The idea is as follows: Each agent has to
make a prediction about the truth value of a proposition of a round t: pt. These
predictions Prt

i (pt) are based on the shared first order evidence as well as the
individual inference or prediction method of the agent (Pri). We assume that
afterwards all predictions are revealed to all agents and might serve as higher
order evidence et for the same round t. Then each agent has to make again a
prediction about pt. Now, we assume that at the end of a round t the truth
value of pt is settled – and for [1548] simplicity of expression we assume also
that it is revealed to all agents. So, the cases to which the argument presented
here applies are not cases of deep disagreement; a characteristic of deep dis-
agreement is that it cannot be resolved by help of further evidence. However,
as we will indicate in the next section, there is a way of relaxing the assumption
that the outcomes are revealed to the agents.

In this dynamics each round t consists of three phases: a phase of updating
on first order evidence, a phase of updating on higher order evidence et, and a
phase where the truth value is revealed. Figure 1 illustrates how the specified
model of making inferences and predictions looks like.

t: 0 1 2 3 4 . . .

phases: priors Pr1 e1 p1 Pr2 e2 p2 Pr3 e3 p3 Pr4 e4 p4 . . .

Figure 1: Our model of peer disagreement: At each round all agents receive
first order evidence and have to make their inferences based on this evidence:
Prt(pt). Afterwards all agents receive information about the other agents’ in-
ferences, i.e. higher order evidence et. They must make further inferences
about the propositions in question which they might base on this further ev-
idence. At the end of each round the truth value of the proposition(s) (pt) in
question is revealed.

Now, as we indicated above, given the truth values of the propositions in
question one can measure the reliability of an agent’s predictions and infer-
ences by tracking the average closeness of the agent’s predictions and infer-
ences to the truth. Such a measure for verifying forecasts was already very early
and quite prominently suggested by Brier (1950) in form of summing up the
squared differences between the predicted value and the outcome as a score.
In this paper we use the quadratic scoring measure because of the popularity
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of this measure, but for technical reasons we use it in the exponent – for details
on using different scoring measures see (Feldbacher-Escamilla under revision,
sect.3.4). Our model can be shown to be very robust regarding the exact choice
of such a scoring measure. So, we define the reliability or success st

i of an infer-
ence or prediction method of agent i up to round t as follows (the truth value
of the proposition p in question is given via val(p), where truth is represented
by val(p) = 1 and falsity by val(p) = 0):

st
i = exp

(
∑

0<u≤t
1 − (val(pu)− Pru

i (pu))2

)
(1)

Note that in this equation one can find all elements of the three phases for
some round t: The assessment of the agents given first order evidence in the
first phase (Prt

i (pt)), the higher order evidence of the second phase (which is
Prt

i (pt) and the past reliability rate st−1
i ), and the revealed truth value of the

third phase (val(pt)). An agent who gets all inferences absolutely right has
maximum reliability of exp(t), whereas an agent who gets all inferences ab-
solutely wrong has a reliability of 0. All other kinds of inferences are strictly
in-between this interval.

Now, let us explicate the notion of an epistemic peer in this model. As we dis-
cussed in the preceding sections, two agents are epistemic peers iff they possess
the same evidence and equal inference skills regarding the evidence. Since ev-
idence sharing is [1549] hard-wired in the model, all agents of the model are
peers in this respect. But how about the other relevant attribute? It seems
plausible to assume that equal inferential skills can be expressed by equal re-
liabilities: According to this model, two agents are equally skilled regarding
inferences on the basis of shared evidence at round t, if their reliabilities st

1 and
st

2 match, i.e.: st
1 = st

2. So, the question of how to update one’s degrees of be-
lief on higher order evidence about one’s epistemic peers’ epistemic attitudes
results in the question of how to update, given st

i = st
j (for all 1 ≤ i, j ≤ n).

Now, we assume this condition for our model of epistemic peer disagreement
by relativising (EPD) to cases of disagreement with peers that have the same
reliabilities:

(EPD) holds for cases with st
1 = · · · = st

n

Note that the problem of epistemic peer disagreement as defined above is due
to this presupposition relevant only for cases where the reliabilities st

i of the
peers match. So, we explicate “same inferential skills” as having identical relia-
bilities. One might think that this is an assumption too strong in order to be put
forward for the notion of epistemic peers, because in fact reliabilities will never
match exactly. However, first of all, we think that once one is able to figure
out some kind of track record, then different reliabilities also indicate differ-
ent inferential skills and hence disqualify the agents in question as peers. Elga
(2007), e.g., also notes that swamping arguments against the equal weight view
are not that pressing once one takes into account that cases of peer disagree-
ment show up less frequently than one might think. Secondly, to have equal
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reliabilities does not imply that the individual inference methods are similar.
Two inference methods can easily become equally reliable, although they con-
stantly come up with different predictions; this happens, e.g., if one of them
has a bias towards overestimation whereas the other has such a bias towards
underestimation; or they just might get things right and wrong at different oc-
casions. So, equal reliabilities of peers still allow for lots of variation among the
peers. Thirdly, in applying the model one can always coarse-grain categories
(e.g. the set of possible values which can be predicted or by clustering cases and
taking their averages) and by this achieve more agreement in reliability rates –
however, e.g., in coarse-graining categories the optimality results are also more
restricted; for details cf. (Feldbacher-Escamilla 2017). And finally, although the
equal weight view as described here covers, strictly speaking, only cases of dis-
agreement among agents with identical reliabilities, a more general approach
of equal weighting for peer and non-peer disagreement (as is outlined in Elga
2007) can be also shown to be covered by our optimality argument. We will say
more on this in the section on possible objections. For now we ask the reader
to consider the two explicated conditions for peerhood – namely update on
shared first order evidence and identical reliabilities st – as clear-cut cases of
peer disagreement.

4 The Optimality of Equal Weighting and
The Suboptimality of Non-Equal Weighting

We want to show now that the equal weight view (EWV) is a specific instance
of a general rule on incorporating higher order evidence which is proven to be
optimal. [1550] We also want to show that the remain steadfast view (RSV) as
well as the total evidence view (TEV) – in case it deviates from (EWV) – are,
in terms of reliability, epistemically suboptimal. Here are the details: The reli-
ability measure as defined in equation (1) can be considered as measuring the
epistemic performance of an agent. As we indicated above, the best perfor-
mance possible up to round t is given if an agent i’s reliability st

i is maximal,
i.e. exp(t). This means that all of her inferences were correct up to t. For better
comparison it is convenient to consider not only the absolute reliability of an
inference or prediction method Pri up to [1551] round t, i.e. st

i , but also the
reliability rate, which is simply a normalised average of the absolute reliabili-
ties of all considered rounds: st

i / exp(t). Clearly the reliability rate st
i / exp(t)

is within [0, 1].
Now, a constraint which is often put forward for rational agents is optimal-

ity: An inference method Pri is epistemically rational, if its reliability rate is
long run optimal compared to all available inference methods Pr1, . . . , Prn in the
sense that st

i / exp(t) ≥ st
j/ exp(t) (1 ≤ j ≤ n), if t goes to infinity. Given this

epistemic constraint, one can show that (EWV) satisfies it, whereas (RSV) as
well as (TEV) fail to do so. For the case of (EWV) we will show this by em-
ploying a general optimality result of the so-called theory of meta-induction. For
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showing the suboptimality of (RSV) and (TEV) we will provide an example
where both of them fail to produce optimal inferences.

Let us start with the optimality of (EWV)! The theory of meta-induction was
introduced by Schurz (2008) in order to address Hume’s problem of induction
which poses a serious threat for the scientific task of making predictions and
inferences. In order to address this problem, the theory of meta-induction pro-
vides a justification for inductive methods by stressing their ability to catch up
with any inference method whatsoever in the long run. This meta-inductive
justification of induction is twofold: First, a specific meta-method for selecting
predictions of any accessible method in a reliability-based way is proven to be
optimal in the sense described above. In a second step, taking for granted the
past success of classical inductive methods, it follows that also selecting these
methods for predictions of future events allows for optimal predictive success.
This holds as long as there is no alternative method accessible which outper-
forms classical inductive methods.

Now, what is relevant for our investigation is not exactly the meta-inductive
justification of inductive methods, but mainly the optimality of a meta-
inductive method. For this reason we present the definition of such a method
and prove its optimality in the appendix. Here is how it works (for comparison
cf. the method EAW in Schurz 2019, the optimality results there are proven by
help of a much more demanding mathematical apparatus): Let us think of the
probability functions Pr1, . . . , Prn as object inference methods in the sense that
whenever they conditionalise on first order evidence, their inferences are func-
tionally independent, i.e. the definition of such an inference method Pri based
on first order evidence contains no reference to one of the other Pr1, . . . , Prn.
As described above (equation 1), for each such method Pri we can define a re-
liability measure st

i with a reliability rate st
i / exp(t). Now, the idea is to define

a meta-method Prm whose inferences or predictions are weighted averages of
the object-methods’ inferences and predictions, where the weights are based
on a reliability measure as defined in equation (1). Given the reliability of a
method Pri up to round t, i.e. given st

i , we get weights for the meta-method
Prm by simple normalisation (it does not matter whether we take the absolute
reliabilities or the reliability rate here):

wt+1
i =

st
i

n
∑

j=1
st

j

(2)

So, simply the more reliable an inference method is, the more weight it gains.
Note that the weights for round t + 1 depend on the reliabilities up to round t.

Finally, by linear weighting according to these weights we can define the
meta-method Prm as follows:

Prt
m(pt) =

n

∑
i=1

wt
i · Prt

i (pt) (3)
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The weights for the meta-inductive inference or prediction Prm at round 0
might be arbitrarily chosen – it might be, e.g., the unweighted average of the
object-level inferences.

Now, by proving main results of the theory of meta-induction and by inge-
niously transferring important theorems of online learning theory to the theory
of meta-induction, Schurz (2008) was able to show the following long run opti-
mality result for such a meta-method – here st

m/ exp(t) is the success measure
or reliability rate of the meta-inductive method Prm:

Theorem 1. In the long run, the reliability rate of the meta-inductive method ap-
proaches or outperforms that of the best available inference method(s).

lim
t→∞

(
max

(
st

1
exp(t)

, . . . ,
st

n
exp(t)

)
− st

m
exp(t)

)
≤ 0

The theorem states that in the limit, i.e. in the long run, the difference between
the reliability rate of the meta-inductive method and that of the most accu-
rate method vanishes, or that the meta-inductive method even outperforms
the most accurate method. In the following we provide an example illustrat-
ing the idea behind this theorem. In the appendix we provide an elementary
proof of this theorem which is intended to be better accessible than most of the
proofs of such results in this area of research.

The main “cause” relevant for success in terms of an outperforming relia-
bility rate is that the weights for cooking up a prediction or inferring an esti-
mation are based on the reliability rates. Perhaps this can be illustrated best
by considering the case of a best competing inference method in the setting.
This means that there is some point in time (i.e. some round) where the relia-
bility rate of that method is no longer outperformed by any other method. The
mechanism of reliability-based weighting is relatively transparent in this case:
By considering the difference of the reliabilities in the exponent, every advan-
tage – no matter how minimal it is – will increase the weight the best inference
method gains until it has (or approaches) full weight. Figure 2 depicts such a
case.
By theorem 1 we know that Prm is an inference method that performs optimally
in the long run compared to all available inference methods Pr1, . . . , Prn. [1552]
Given our epistemic constraint, this provides a reason for considering Prm to
be a rational inference method, i.e. to be epistemically justified.

Now, it is easy to see that Prm is an inference method based on higher order
evidence only. Furthermore, Prm is a long run optimal method for all cases,
cases of no disagreement, cases of disagreement, cases of disagreement among
epistemic peers, and cases of disagreement among non-peers. What is impor-
tant to note is that in the specific case of epistemic peer disagreement, Prm
coincides with (EWV): Given st

1 = · · · = st
n as we presupposed for (EPD), it

follows from the definition of Prm via equation (2) that wt
1 = · · · = wt

n = 1/n.
Hence, (EWV) instantiates Prm for the specific case of epistemic peer disagree-
ment. Since Prm is shown to be optimal regarding all cases of agreement and
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Figure 2: Example of reliability-based weighting; Pr1 and Pr2 are object inference methods; Prm is the meta
inference method as defined above. At the beginning the inferences of Pr2 are more accurate (until round 2);
hence, at the beginning Prm puts more weight on Pr2’s predictions. Little by little Prm assigns higher weight
to the more and more accurate Pr1 until it fully disregards the less reliable inference method Pr2 (round 20).
Regarding the diagrams: top: predicted values of the methods (the true value is supposed to be constantly 1:
val(pt) = 1); middle: reliability rates showing that the rate of inaccurate Pr2 decreases rapidly, whereas that of
Pr1 approaches a stable rate (and will increase later on); bottom: reliability dependent weights of the methods,
showing that the best method in the setting Pr1 gains relatively soon full weight.

disagreement, (EWV) concerns the particular case of responding optimally to
cases of epistemic peer disagreement. Hence, according to our epistemic con-
straint, (EWV) is epistemically justified regarding cases of epistemic peer dis-
agreement.

It is important to note that here we claim only that (EWV) instantiates the
meta-inductive Prm in cases of peer disagreement. We want to consider (EWV)
here to be silent with respect to all other cases of dis-/agreement. So, this
version of (EWV) is undetermined [1553] regarding cases where st

i ̸= st
j. Per-

haps the following externalist interpretation of our model helps to distinguish
(EWV) better from the meta-inductive weighting strategy Prm, and hence iden-
tify our model of applying (EWV) as a model of dealing with peer disagree-
ment (the following interpretation is intended for illustrative purposes; it is
not intended for comitting us to externalism): Assume that the reliabilities
st

i , st
j are only accessible to an external subject, but not to the individual agents

of the setting. Suppose furthermore that the individual agents get from the
external subject only the information that they are peers, so, only the external
subject knows that st

i = st
j, whereas this is not internal or transparent to the

individual agents, because they did not keep track of reliabilities at all. Given
this interpretation, an individual agent applying (EWV) is not at all like the
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meta-inductive Prm, since the informational basis of the former consists only
of knowledge about the assessment of the other agents and that they are peers,
whereas the informational basis of the latter requires equation (1). Still, from
the externalist subject’s perspective, the individual applying (EWV) is optimal
with respect to cases of peer disagreement.

Let us come to a suboptimality proof of the alternative approaches to epis-
temic peer disagreement: (RSV) and (TEV). For this purpose it suffices to pro-
vide examples where these approaches fail to be optimal in the long run. It
is easy to construct an “environment” which favours the competitors of (RSV)
and (TEV), although both methods might, from time to time, catch up in relia-
bilistic terms. Consider, e.g. a setting with two agents, having inference meth-
ods Pr1 and Pr2, where the latter represents a steadfaster (RSV) or an agent con-
sidering the total evidence (TEV) which does not coincide with (EWV). Now,
let us assume that out of three pairs of inference rounds, one is a round with
epistemic peer disagreement and the other two are rounds with disagreement
among non-peers. In general, for constructing an example with suboptimal
behaviour we need to assume that there are cases of non-peers, because oth-
erwise all reliabilities would be always equal and hence there would be no
suboptimality. For providing a counterexample to (RSV) and (TEV) the im-
portant task is to prove suboptimality due to not equal weighting in cases of
peer disagreement. And we can do so by thinking of inferences with reliabil-
ities distributed as shown in table 1: At round u (and u + 3, u + 6, . . . ) Pr1
and Pr2 are non-peers and Pr2, the steadfaster or total evidence strategist,
outperforms Pr1; at u + 1 (and u + 4, u + 7, . . . ) both are peers and equally
reliably; and at u + 2 (and u + 5, u + 8, . . . ) they become non-peers again,
but this time with Pr1 outperforming Pr2. By averaging the reliabilities, one
can see that Pr1 outperforms Pr2, since in the long run (on average) it holds
st→∞

1 = exp(0.50) > exp(0.497) = st→∞
2 . Again, note that the example is con-

structed in such a way that suboptimality results from not equally weighting
in case of a peer disagreement: Agent 2 outperforms agent 1 before agent 1 be-
comes a peer and agent 2 performs suboptimally when deciding to not equally
weight higher order evidence of agent 1’s epistemic attitude. Clearly, there are
favourable settings for steadfasters and total evidence strategists too: remain-
ing steadfast might result in a reliability series of exp(0.51), exp(0.50), exp(0.50)
(instead of exp(0.51), exp(0.50), exp(0.48)), but to prove the possibility of sub-
optimality in one situation is not in contrast with proving optimality in an-
other one. The main problem is that there is a possibility of suboptimality for
steadfasters and total evidence strategists due to not equal weighting in case of
disagreement among peers.

[1554] The optimality result for (EWV) – as cited in theorem 1 – shows that
such a case cannot appear if one performs equal weighting. Clearly, an agent
performing (EWV) can also be suboptimal compared to her competitors. The
simplest case one might think of is a setting where no peer disagreement shows
up, because the agents’ reliabilities never match. However, this suboptimality
of (EWV) is due to her being suboptimal in cases of non epistemic peer dis-
agreement. Regarding cases of epistemic peer disagreement – which are the
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u u + 1 u + 2 · · ·
val(pt) 1.0 1.0 1.0 · · ·
Prt

1(pt) 1 −
√

1 − .5 1 −
√

1 − .5 1 −
√

1 − .5 · · ·
Prt

2(pt) 1 −
√

1 − .51 1 −
√

1 − .5 1 −
√

1 − .48 · · ·
st

1 exp(.50) exp(.50) exp(.50) · · ·
st

2 exp(.51) exp(.50) exp(.48) · · ·
↖↑

peer disagreement

Table 1: Example of the suboptimality of (RSV) and (TEV) due to not weighting
equally among one’s epistemic peers in case of epistemic peer disagreement:
Pr1 gets the inferences in 50% of the cases right, whereas Pr2 is sometimes
slightly better, then Pr1 catches up and then, in the case of a peer disagreement,
strategy Pr2 of remaining steadfast or incorporating total evidence looses. Peer
disagreement consists in equal reliabilities in round u + 1 and different predic-
tions in round u + 2 (the relevant parameters are marked grey).

cases the debate is about – (EWV) is guaranteed to be optimal.

5 Possible Objections, Replies, and Restrictions

In this section we discuss possible objections to particular assumptions of our
model, namely that the truth is always revealed, that one can employ a big
enough track record, and that we consider peers via exactly matching relia-
bilities. Finally, we embed our argument in favour of the equal weight view
(EWV) a little bit more into the traditional debate by showing how one can
understand and address the already mentioned swamping problem within this
approach.

Regarding deep disagreement and revealing the truth: One might object that in
order to measure the reliabilities of the epistemic agents, our model presup-
poses that the truth values of the propositions are revealed at some point in
time to the epistemic agents (via val(p) in phase 3). However, in case of deep
disagreement there might be no possibility to get to know these values. So, how
can our model be employed in these cases? Although we think that one can ad-
dress this problem in the particular applications due to the high degree of flex-
ibility in interpreting the model, we also want to mention that a possible route
consists in using an expanded meta-inductive framework which can cope also
with so-called intermittent prediction games where the prediction series do not
have to be complete. One can also devise a reliability measure for such games
by relativising the reliability rate to the number of rounds where predictions
and outcomes are available. The meta-inductive optimality result [1555] also
transfers to these games (cf. Schurz 2019, sect.7.2). Now, if we interpret cases

13



of deep disagreement – i.e. cases in which the disagreement is never resolved,
where the true outcome is not available – as such intermittent rounds, then we
can also apply the model to cases of deep disagreement: The reliability rates
are calculated by help of non-deep cases of disagreement and then applied to
cases of deep disagreement too. And the optimality result states that equally
weighting equally reliable inference methods allows for best predictive suc-
cess in the long run. Hence, (EWV) is an optimal response in cases of deep
disagreement too.

Regarding getting a big enough track record: Here one might wonder whether
a big enough basis for calculating relevant reliability rates is always accessible
(the model presupposes an arbitrary growing n). Clearly, in many important
cases of peer disagreement it will be very hard to find such a big enough basis.
So, e.g., in estimating the reliability of two disagreeing, let us say, physicians,
one typically lacks track record of them regarding exactly similar cases. How-
ever, note that in our model the events underlying the prediction series need
not be of the same type or in any other way closely connected to one another.
The only thing that matters is that one considers the series of events (may they
be of a very different type or not) to be of some relevance. Whatever this ex-
actly means is left open by the framework; it is up to the specific application to
cluster events into long enough series.

Regarding peerhood and exactly matching reliabilities: Now, as mentioned
above, to restrict cases of peer disagreement to cases of exactly matching re-
liabilities is for many cases too restrictive and idealised. Above we have al-
ready outlined some possibilities to increase chances of matching reliabilities,
namely coarse-graining of categories, clustering and averaging of predictions.
These methods are only about an application of the model. There is, how-
ever, another possibility to de-idealise the model which is directly about the
interpretation of the model: There is a straightforward expansion of the equal
weight view which suggests to give more weight to more reliable agents and
less weight to less reliable ones. Elga (2007, p.489) describes the expansion as
follows:

“At the start, the equal weight view applied only to cases in which
you initially count your advisor as a peer – as equally likely to be
right, on the supposition that the two of you end up disagreeing.
But the modified view also applies to cases in which you initially
count an advisor as an epistemic superior – as being more than 50%
likely to be right, on the supposition that the two of you end up dis-
agreeing. Likewise, the view applies to cases in which you initially
count an advisor as an epistemic inferior.”

The idea is that according to an expanded version of (EWV) what matters is not
that the weights for all individuals are equal (wt

1 = · · ·wt
n), but that the weights

and the (normalised) reliabilities are equal. This expansion covers the strict case
of peer disagreement with st

1 = · · · = st
n as well as all other cases of disagree-

ment. Now, by this one can also relax the second condition we put forward for
peerhoodness, namely the condition of identical reliabilities. One might consider
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peerhoodness as a notion which comes in degrees or which allows not only for
strictly identical, but also similar inferential skills (st

1 ≈ · · · ≈ st
n). Regardless of

how exactly one relaxes this condition, if one considers the expanded version
of (EWV) where equality is not only [1556] demanded for the weights in case
of strictly matching reliabilities, but where equality is in general demanded for
the weights and the respective (normalised) reliabilities, then our optimality
argument favours also an expanded version of (EWV) with less ideal assump-
tions about peerhood.

Regarding swamping: Regarding the problem of higher order evidence
swamping first order evidence our framework shows why and how higher or-
der evidence can relevantly outrule first order evidence and might even swamp
it: Inferences based on first order evidence are prone to being suboptimal,
whereas inferences based on higher order evidence drastically decrease pos-
sibilities of being suboptimal relative to one’s fellows. As we have shown, this
holds particularly for cases of disagreement amongst peers. Regarding dis-
agreement amongst non-peers, there is also a conclusion one can draw from
our framework: The long run optimality result for Prm is based on the proof
of an upper bound for differences in the reliability rate between the individual
first order inferences and that one which is based on higher order evidence. As
we show in the proof in the appendix, for Prm the following exact boundary
holds with respect to any inference method Pri of Pr1, . . . , Prn for some known
t (step 11 of the proof):

st
i

exp(t)
− st

m
exp(t)

≤
√

2 ln(n) · t

e
√

2 ln(n)·t

In the limit this term goes to 0 which means that sm approaches also the reli-
ability of the best agents in the setting. However, for the short run, i.e. t not
arbitrarily high, n, i.e. the number of agents in the setting, has a relevant in-
fluence on the performance. The more non-peers there are in the setting, the
more the higher order strategy is prone to errors. So, in such cases first order
evidence might easily outrule higher order evidence, i.e. in this cases higher
order evidence should not swamp first order evidence. Notice, however, that
this concerns cases of disagreement amongst non-peers. And for these cases
(EWV) leaves the choice of weights for incorporating first and higher order ev-
idence completely open, since, as we have presupposed for EPD, cases of peer-
hood were characterised as cases where the individual reliabilities st

1, . . . , st
n are

identical or close to each other.
We have named here a couple of worries one might have with our approach

to the problem of epistemic disagreement. Due to lack of space we can provide
only hints on how these problems might be addressed: It seems that the prob-
lem of deep disagreement can be accounted for by including intermittent pre-
diction games into the model where the truth is not always released. The prob-
lem of generating a big enough basis for calculating a reliabilistic track record
might be addressed by clustering different types of events to single event se-
ries; for the problem of assuming matching reliabilities for peerhood we indi-
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cated how an expansion of the view as suggested, e.g., by Elga (2007) covers
also cases of approximative matching reliabilities or, more generally, reliability
dependent weighting (where in the expanded version equal in equal weight view
is about equating the weights with the reliabilities). And for the swamping
problem our suggestion is that in case of a small record first order evidence
should not be swamped, but that with an increasing amount of such a record
higher order evidence becomes more influential due to its feature of guaran-
teeing optimality. [1557]

6 Conclusion

In the debate of epistemic peer disagreement the central question concerns the
problem of how to incorporate or weight higher order evidence about epis-
temic peers disagreeing with one’s epistemic attitudes. In this paper we have
presented a model for such disagreement that frames this problem as a prob-
lem of updating one’s credences given such higher order evidence. We have
identified the conditions for epistemic peers in updating on one and the same
set of first order evidence, and in having the same inferential skills regarding
this evidence, measured by a reliability track record.

We were able to define in this model the three traditional approaches: the
remain steadfast view (RSV) which suggests to ignore such evidence in updat-
ing by assigning it zero weight. The equal weight view (EWV) which suggests
to update on such evidence by equally weighting it. And finally, the total evi-
dence view (TEV) which suggests to consider higher order evidence simply as
just another kind of evidence.

Since updating on higher order evidence is a social epistemological action,
we have put forward an optimality constraint for such actions by aiming at
optimality: One’s update on higher order evidence should be such that (in
the long run) one’s inferences are optimal in the sense that they are the most
reliable ones compared to the other inference methods of the setting. By em-
ploying the framework of meta-induction from Schurz (2008) we were able to
show that (EWV) satisfies this optimality constraint for cases of epistemic peer
disagreement, whereas (RSV) and (TEV) fail to do so. This adds a new argu-
ment to the debate on epistemic peer disagreement which seems to be decisive
with respect to (EWV).
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Appendix

Here is a proof of theorem 1: The main strategy of the proof is to apply inequal-
ities such that the differences of the reliabilities are narrowly bounded. As we
demonstrate now, reliability-based weighting allows for an optimal bound in
the sense that in the limit such weighting cannot be outperformed by any other
inference method in terms of the reliability rate. As we have argued above, the
equal weight view is such a reliability-based weighting method; for this rea-
son the proven guarantee holds also for the equal weight view. Here is a quite
explicit sketch of the proof:

Proof. We aim at proving that reliability-based weighting allows for optimal-
ity in the sense that the reliability rate of such a predictor is not outperformed
by that of its competitors. In order to do so, what one typically does in on-
line learning theory is to characterise the difference between the competing
predictors and that of the reliability-based predictor by help of a learning pa-
rameter η which is a function of the number of rounds t, and which grows
sublinearly with t. If such a characterisation succeeds, then the difference of
the reliability rate, which is the difference of the reliabilities divided [1558] by
t, also grows sublinearly only and vanishes in the limit; this means that by
help of such a characterisation the reliability-based predictor is shown to be
not outperformed by any other predictor in the limit. As it turns out, one can

characterise such differences in reliabilities by help of choosing η =
√

2·ln(n)
T .

Here T is an arbitrary round and sometimes also called the prediction horizon
up to which a boundary is proven. In order to generalise this boundary to
any round t, one needs, in a second step, to get rid of the exact choice of T by
employing the so-called doubling trick, according to which for each round t it
is assumed that the prediction horizon T doubles; this assumption increases
the bound a bit, but does not change anything regarding the limiting case, and
hence allows for proving a general optimality result too. In the following proof
we demonstrate the first part (for arbitrary T); the second part of applying the
doubling trick can be recapitulated by help of (Mohri, Rostamizadeh, and Tal-
walkar 2012, p.158).

1. Define lt
i = l(val(pt), Prt

i (pt|et)) = (val(pt) − Prt
i (pt|et))2 as the

quadratic loss of predictor i at round t with respect to predicting pt (on
the basis of first order evidence et).

2. Let us assume that exp is the basis eη , where η is a learning parameter

defined as η =
√

2·ln(n)
T and T is some fixed prediction horizon; here we

aim only at proving a bound up to an arbitrarily high prediction round
T (by help of the mentioned doubling trick – where one considers at each
round as prediction horizon two times the round number – one can get
rid of this parameter). Furthermore let l be convex (the squared differ-
ence function we used in our model is convex – more on convexity see
below, when we use this property).
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3. According to equation (1), the reliability st
i of a prediction method Pri

up to t is defined as the cumulative non-averaged score of Pri up to t in
the exponent. We can reformulate this measure recursively as follows:
st+1

i = st
i · exp(1 − l(val(pt), Prt

i (pt|et))) (keep in mind that below we
will take exp according to 2. to be eη). By this re-formulation we get
the following equalities about the ratio of the denominators used in nor-
malisation (the normalising denominator for t and that of t − 1) in the
definition of the weights according to equation (2) – we write for short lt

i
for l(val(pt), Prt

i (pt|et)):

n
∑

i=1
st

i

n
∑

j=1
st−1

j

=
n

∑
i=1

st
i

n
∑

j=1
st−1

j

=
n

∑
i=1

st−1
i ·e−η·lt

i · eη

n
∑

j=1
st−1

j

=
n

∑
i=1

wt
i · e−ηlt

i · eη

4. By the inequality e−x ≤ 1− x+ x2

2 (valid for all x ≥ 0) we get the instance:

e−η·lt
i ≤ 1 − η · lt

i +
η2 · lt

i
2

2

5. [1559] By substituting the right term in the inequality of 4. for the respec-
tive e-term in 3. we get:

n
∑

i=1
st

i

n
∑

j=1
st−1

j

≤
n

∑
i=1

wt
i ·
(

1 − η · lt
i +

η2 · lt
i
2

2

)
· eη

and by arithmetic transformation:

≤

 n

∑
i=1

wt
i −

(
η ·

n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
)) · eη

By the normalisation of w:
n

∑
i=1

wt
i = 1, so:

≤
(

1 −
(

η ·
n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
)))

· eη

By taking the ln on both sides of the inequality:

ln


n
∑

i=1
st

i

n
∑

j=1
st−1

j

 ≤ ln

(
1 −

(
η ·

n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
)))

+ η
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6. By the inequality e−x ≥ 1− x (valid for any x) we get ln(e−x) ≥ ln(1− x)
and hence −x ≥ ln(1 − x). So, as an instance:

−
(

η ·
n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
))

≥

ln

(
1 −

(
η ·

n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
)))

7. By substituting the left (upper) term in the inequality of 6. for the right
term in the inequality in 5. we get: [1560]

ln


n
∑

i=1
st

i

n
∑

j=1
st−1

j

 ≤ −
(

η ·
n

∑
i=1

(
wt

i · lt
i
)
− η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
))

+ η

and by arithmetic transformation:

≤ η2

2
·

n

∑
i=1

(
wt

i · lt
i
2
)

︸ ︷︷ ︸
≤1

−η ·
n

∑
i=1

(
wt

i · lt
i
)
+ η

. . . due to
n

∑
i=1

wt
i = 1, and l ∈ [0, 1], so:

≤ η2

2
· 1 − η ·

n

∑
i=1

(
wt

i · lt
i
)
+ η

8. So, we arrived at the inequality (from 7.):

ln

(
n

∑
i=1

st
i

)
− ln

(
n

∑
j=1

st−1
j

)
≤ η2

2
− η ·

n

∑
i=1

(
wt

i · lt
i
)
+ η

Now we can sum up each side of the inequality from 1 to T:

T

∑
t=1

ln

(
n

∑
i=1

st
i

)
︸ ︷︷ ︸

=de f Ct

− ln

(
n

∑
j=1

st−1
j

)
︸ ︷︷ ︸

=de f Ct−1


︸ ︷︷ ︸

= (CT−CT−1)+···+(C2−C1)+(C1−C0)
=CT−C0

≤
T

∑
t=1

(
η2

2
− η ·

n

∑
i=1

(
wt

i · lt
i
)
+ η

)
︸ ︷︷ ︸

=
T·η2

2 −η·
T
∑

t=1

n
∑

i=1
(wt

i ·l
t
i )

So, we arrive at:

ln

(
n

∑
i=1

sT
i

)
− ln

(
n

∑
j=1

s0
j

)
︸ ︷︷ ︸

=n

≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
+ T · η
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Hence:

ln

(
n

∑
i=1

sT
i

)
− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
+ T · η

[1561] Recall, st
i is the cumulative score up to t in the exponent and we are

after the bound for the difference with respect to the best predictor, hence
we concentrate on the predictor with maximal cumulative score up to T:
Let us denote this predictor with ‘b’ (b = ιi ∑T

t=1 1 − lt
i = max(∑T

t=1 1 −
lt
1, . . . , ∑T

t=1 1 − lt
n)). If there are more, then we can randomly pick one.

From above we get:

ln(sT
b )− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
+ T · η

9. By definition of s:

ln(sT
b ) = ln

(
exp

(
η ·

T

∑
t=1

1 − lt
b

))
= η ·

T

∑
t=1

1 − lt
b

By substituting the right term in the last inequality in 8. we get:

η ·
T

∑
t=1

(1 − lt
b)− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
+ T · η

And by arithmetical transformation:

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
−

T

∑
t=1

lt
b ≤ T · η

2
+

ln(n)
η

If we substitute for η in accordance with 2: η =
√

2·ln(n)
T , we get:

T

∑
t=1

n

∑
i=1

(
wt

i · lt
i
)
−

T

∑
t=1

lt
b ≤

√
2 · ln(n) · T

Now, what is left is to employ the grey marked term for proving a bound
for the difference between the cumulative lm and lb (which is called regret
in the machine learning literature).

10. According to equation (3), Pm predicts as follows: Pt
m(pt) =

n
∑

i=1
wt

i ·

Pt
i (pt). Hence its loss is: l

(
val(pt),

n
∑

i=1
(wt

i · Pt
i (pt))

)
. And hence its cu-

mulative loss is:
T

∑
t=1

l

(
val(pt),

n

∑
i=1

(wt
i · Pt

i (pt))

)
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[1562] Since l is convex (according to 2.), we get:

l

(
val(pt)

n

∑
i=1

(wt
i · Pt

i (pt))

)
≤

n

∑
i=1

(
wt

i · l(val(pt), Pt
i (pt))

)
(I.e.: The loss of a weighted average of predictions is smaller than or
equal to the weighted average of the losses of the predictions.) Hence,
from the last inequality in 9. and the convexity of l we get:

T

∑
t=1

(
l

(
val(pt),

n

∑
i=1

(wt
i · Pt

i (pt))

))
−

T

∑
t=1

lt
b︸ ︷︷ ︸

regret of Pm with respect to Pb

≤
√

2 · ln(n) · T

Since Pb was the method with maximal absolute reliability up to T, i.e.
least cumulative loss up to T (we defined b this way in 8.), this regret
bound holds also with respect to all other predictors.

11. Now we can expand the left part of this inequality by +T − T and include
these terms into sum-terms such that we get:

T

∑
t=1

(1 − lt
b)︸ ︷︷ ︸

sT
b

−
T

∑
t=1

(1 − lt
m)︸ ︷︷ ︸

sT
m

≤
√

2 · ln(n) · T

This implies for the reliability rates:

sT
b

exp(T)
− sT

m
exp(T)

≤
√

2 · ln(n) · T
exp(T)

=

√
2 · ln(n) · T

e
√

2·ln(n)·T

12. Hence:

lim
t→∞

(
st

b
exp(t)

− st
m

exp(t)

)
≤ 0

[1563]
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pp. 343–354.

— (2019). Hume’s Problem Solved. The Optimality of Meta-Induction. Cambridge,
Massachusetts: The MIT Press.

22

https://doi.org/10.1215/00318108-2006-035
https://doi.org/10.1215/00318108-2006-035
http://www.jstor.org/stable/20779554
http://www.jstor.org/stable/20779554
https://doi.org/10.1111/j.1468-0068.2007.00656.x
https://doi.org/10.1007/s10838-017-9379-7
https://doi.org/10.1007/s11229-017-1651-1
https://doi.org/10.1111/0029-4624.35.s15.4
https://doi.org/10.1086/592550

	Introduction
	Approaches to Epistemic Peer Disagreement
	Inferential Skills As Reliabilities
	The Optimality of Equal Weighting and The Suboptimality of Non-Equal Weighting
	Possible Objections, Replies, and Restrictions
	Conclusion

